

GLOBAL INSTITUTE OF TECHNOLOGY, JAIPUR

Notes File

Subject: Data Structures and Algorithms

 Subject Code: 3CS4-05

 Prepared By: Sohan Gupta

 Assistant Professor, CSE

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Syllabus II Year-III Semester: B.Tech. Computer Science and Engineering 3CS4-05: Data
Structures and Algorithms

Credit-3 Max. Marks: 150 (IA:30, ETE:120)

 Syllabus
1. Stacks: Basic Stack Operations, Representation of a Stack using Static Array and

Dynamic Array, Multiple stack implementation using single array, Stack Applications:

Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating

Arithmetic Expressions and Towers of Hanoi.

2. Queues: Basic Queue Operations, Representation of a Queue using array, Implementation

of Queue Operations using Stack, Applications of Queues- Round Robin Algorithm.

Circular Queues, DeQueue Priority Queues.

Linked Lists:Introduction, single linked list, representation of a linked list in memory,

Different Operations on a Single linked list, Reversing a single linked list, Advantages

and disadvantages of single linked list, circular linked list, double linked list and Header

linked list.

3. Searching Techniques: Sequential and binary search.Sorting Techniques: Basic concepts,

Sorting by: bubble sort, Insertion sort, selection sort, quick sort, heap sort, merge sort,

radix sort and counting sorting algorithms.

4. Trees: Definition of tree, Properties of tree, Binary Tree, Representation of Binary trees

using arrays and linked lists, Operations on a Binary Tree, Binary Tree Traversals

(recursive), Binary search tree, B-tree , B+ tree, AVL tree, Threaded binary tree.

5. Graphs: Basic concepts, Different representations of Graphs, Graph Traversals (BFS &

DFS), Minimum Spanning Tree(Prims &Kruskal), Dijkstra‘s shortest path

algorithms.Hashing: Hash function, Address calculation techniques, Common hashing

functions, Collision resolution: Linear and Quadratic probing, Double hashing.

Objective: Why Are Data Structures So Important?

You may wonder why we pay so much attention to data structures and why we review them in

such a great details. The reason is we aim to make out of you thinking software engineers.

Without knowing the basic data structures and computer algorithms in programming well, you

cannot be good developers and risk to stay an amateur. Whoever knows data structures and

algorithms well and starts thinking about their correct use has big chance to become a

professional – one that analyzes the problems in depth and proposes efficient solutions.

Data Structures and Algorithms are fundamental to programming and to understanding

computation. The purpose of this module is to provide students with a coherent introduction to

techniques for using data structures and some basic algorithms, with the tools for applying these

techniques to computational problems. Teaching and learning methods include lectures and

reading material which describe techniques for analysing algorithms and applications of data

structures, and a problem sheet which gives students an opportunity to practice problem solving.

Course Outcomes
 Able to understand the concepts of data structure, data type and array data structure.

 Able to analyze algorithms and determine their time complexity.

 Able to implement linked list data structure to solve various problems.

 Able to understand and apply various data structure such as stacks, queues, trees and

graphs to solve various computing problems using C programming language.

 Able to implement and know when to apply standard algorithms for searching and

sorting.

 Able to effectively choose the data structure that efficiently model the information in a

problem

On completion of the module the student should be able to:

 Understand a variety of techniques for designing algorithms.

 Understand a wide variety of data structures and should be able to use them appropriately

to solve problems

 Understand some fundamental algorithms.

Content
 Analysis of running time of algorithms: asymptotic notation, analysis of recursive

algorithms.

 Efficient algorithms for sorting and selection: selection sort, merge sort, insertion sort,

quick sort, binary search.

 Efficient data structures: sets, lists, queues and stacks.

 Dictionary data structures: hash tables, binary search trees.

 Elementary tree and graph algorithms: depth first and breadth first search.

Introduction

There are hundreds of books written on this subject. In the four volumes, named "The Art of

Computer Programming", Donald Knuth explains data structures and algorithms in more than

2500 pages. Another author, Niklaus Wirth, has named his book after the answer to the question

"why are data structures so important", which is "Algorithms + Data Structures = Programs".

The main theme of the book is again the fundamental algorithms and data structures in

programming.

If this book is about data structures and algorithms, then perhaps we should start defining these

terms.. We begin with a definition for ―algorithm..‖

Algorithm: A finite sequence of steps for accomplishing some computational task.. An algorithm

must Have steps that are simple and definite enough to be done by a computer, and Terminate

after finitely many steps.

This definition of an algorithm is similar to others you may have seen in prior computer science

courses.. Notice that an algorithm is a sequence of steps, not a program.. You might use the same

algorithm in different programs, or express the same algorithm in different languages, because an

algorithm is an entity that is abstracted from implementation details.. Part of the point of this

course is to introduce you to algorithms that you can use no matter what language you program

in.. We will write programs in a particular language, but what we are really studying is the

algorithms, not their implementations..

The definition of a data structure is a bit more involved.. We begin with the notion of an abstract

data type..

Abstract data type (ADT): A set of values (the carrier set), and operations on those values..

Here are some examples of ADTs:

Boolean—The carrier set of the Boolean ADT is the set { true, false }.. The operations on these

values are negation, conjunction, disjunction, conditional, is equal to, and perhaps some others..

Integer—The carrier set of the Integer ADT is the set {, -2, -1, 0, 1, 2, }, and the

operations on these values are addition, subtraction, multiplication, division, remainder, is equal

to, is less than, is greater than, and so on.. Note that although some of these operations yield

other Integer values, some yield values from other ADTs (like true and false), but all have at

least one Integer value argument..

String—The carrier set of the String ADT is the set of all finite sequences of characters from

some alphabet, including the empty sequence (the empty string).. Operations on string values

include concatenation, length of, substring, index of, and so forth..

Bit String—The carrier set of the Bit String ADT is the set of all finite sequences of bits,

including the empty strings of bits, which we denote λ: { λ, 0, 1, 00, 01, 10, 11, 000, }..

Operations on bit strings include complement (which reverses all the

bits), shifts (which rotates a bit string left or right), conjunction and disjunction (which combine

bits at corresponding locations in the strings, and concatenation and truncation..

http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
http://en.wikipedia.org/wiki/Algorithms_%2B_Data_Structures_%3D_Programs

The thing that makes an abstract data type abstract is that its carrier set and its operations are

mathematical entities, like numbers or geometric objects; all details of implementation on a

computer are ignored.. This makes it easier to reason about them and to understand what they

are.. For example, we can decide how div and mod should work for negative numbers in the

Integer ADT without having to worry about how to make this work on real computers.. Then we

can deal with implementation of our decisions as a separate problem.. Once an abstract data type

is implemented on a computer, we call it a data type..

Data type: An implementation of an abstract data type on a computer..

Thus, for example, the Boolean ADT is implemented as the boolean type in Java, and the bool

type in C++; the Integer ADT is realized as the int and long types in Java, and the Integer

class in Ruby; the String ADT is implemented as the String class in Java and Ruby..

Abstract data types are very useful for helping us understand the mathematical objects that

we use in our computations, but, of course, we cannot use them directly in our programs.. To use

ADTs in programming, we must figure out how to implement them on a computer..

Implementing an ADT requires two things:

Representing the values in the carrier set of the ADT by data stored in computer memory, and

Realizing computational mechanisms for the operations of the ADT..

Finding ways to represent carrier set values in a computer‘s memory requires that we determine

how to arrange data (ultimately bits) in memory locations so that each value of the carrier set has

a unique representation.. Such things are data structures..

Data structure: An arrangement of data in memory locations to represent values of the carrier set

of an abstract data type..

Realizing computational mechanisms for performing operations of the type really means finding

algorithms that use the data structures for the carrier set to implement the operations of the

ADT.. And now it should be clear why we study data structures and algorithms together: to

implement an ADT, we must find data structures to represent the values of its carrier set and

algorithms to work with these data structures to implement its operations..

A course in data structures and algorithms is thus a course in implementing abstract data types..

It may seem that we are paying a lot of attention to a minor topic, but abstract data types are

really the foundation of everything we do in computing.. Our computations work on data.. This

data must represent things and be manipulated according to rules.. These things and the rules for

their manipulation amount to abstract data types..

Usually there are many ways to implement an ADT.. A large part of the study of data

structures and algorithms is learning about alternative ways to implement an ADT and evaluating

the alternatives to determine their advantages and disadvantages.. Typically some alternatives

will be better for certain applications and other alternatives will be better for other applications..

Knowing how to do such evaluations to make good design decisions is an essential part of

becoming an expert programmer..

DATA STRUCTURE: -Structural representation of data items in primary memory to do

storage& retrieval operations efficiently.

FILE STRUCTURE: Representation of items in secondary memory.

While designing data structure following perspectives to be looked after.

i. Application(user) level: Way of modeling real-life data in specific context.

ii. Abstract(logical) level: Abstract collection of elements & operations.

iii. Implementation level: Representation of structure in programming language.

Data structures are needed to solve real-world problems. But while choosing

implementations for it, its necessary to recognize the efficiency in terms of TIME and

SPACE.

TYPES:

Simple: built from primitive data types like int, char & Boolean. eg: Array & Structure

Compound: Combined in various ways to form complex structures.

1:Linear: Elements share adjacency relationship& form a sequence. Eg: Stack, Queue ,

Linked List

2: Non-Linear: Are multi-level data structure. eg: Tree, Graph.

ABSTRACT DATA TYPE :

Specifies the logical properties of data type or data structure. Refers to the mathematical

concept that governs them.

They are not concerned with the implementation details like space and time efficiency.

They are defined by 3 components called Triple =(D,F,A) D=Set of domain

F=Set of function A=Set of axioms / rules

Algorithm Complexity

We cannot talk about efficiency of algorithms and data structures without explaining the term

"algorithm complexity", which we have already mentioned several times in one form or another.

We will avoid the mathematical definitions and we are going to give a simple explanation of

what the term means.

Algorithm complexity is a measure which evaluates the order of the count of operations,

performed by a given or algorithm as a function of the size of the input data. To put this simpler,

complexity is a rough approximation of the number of steps necessary to execute an algorithm.

When we evaluate complexity we speak of order of operation count, not of their exact count. For

example if we have an order of N
2
 operations to process N elements, then N

2
/2 and 3*N

2
 are of

one and the same quadratic order.

Algorithm complexity is commonly represented with the O(f) notation, also known as

asymptotic notation or ―Big O notation‖, where f is the function of the size of the input data. The

asymptotic computational complexity O(f) measures the order of the consumed resources (CPU

time, memory, etc.) by certain algorithm expressed as function of the input data size.

Complexity can be constant, logarithmic, linear, n*log(n), quadratic, cubic, exponential, etc. This

is respectively the order of constant, logarithmic, linear and so on, number of steps, are executed

to solve a given problem. For simplicity, sometime instead of ―algorithms complexity‖ or just

―complexity‖ we use the term ―running time‖.

Complexity and Execution Time

The execution speed of a program depends on the complexity of the algorithm, which is

executed. If this complexity is low, the program will execute fast even for a big number of

elements. If the complexity is high, the program will execute slowly or will not even work (it

will hang) for a big number of elements.

If we take an average computer from 2008, we can assume that it can perform about 50,000,000

elementary operations per second. This number is a rough approximation, of course. The

different processors work with a different speed and the different elementary operations are

performed with a different speed, and also the computer technology constantly evolves. Still, if

we accept we use an average home computer from 2008, we can make the following conclusions

about the speed of execution of a given program depending on the algorithm complexity and

size of the input data.

Best, Worst and Average Case

Complexity of algorithms is usually evaluated in the worst case (most unfavorable scenario).

This means in the average case they can work faster, but in the worst case they work with the

evaluated complexity and not slower.

Let‘s take an example: searching in array. To find the searched key in the worst case, we have

to check all the elements in the array. In the best case we will have luck and we will find the

element at first position. In the average case we can expect to check half the elements in the

array until we find the one we are looking for. Hence in the worst case the complexity is O(N) –

linear. In the average case the complexity is O(N/2) = O(N) – linear, because when evaluating

complexity one does not take into account the constants. In the best case we have a constant

complexity O(1), because we make only one step and directly find the element.

Time complexity, space complexity, and the O-notation

Time complexity

How long does this sorting program run? It possibly takes a very long time on large inputs (that

is many strings) until the program has completed its work and gives a sign of life again.

Sometimes it makes sense to be able to estimate the running time before starting a program.

Nobody wants to wait for a sorted phone book for years! Obviously, the running time depends on

the number n of the strings to be sorted. Can we find a formula for the running time which

depends on n?

Having a close look at the program we notice that it consists of two nested for-loops. In both

loops the variables run from 0 to n, but the inner variable starts right from where the outer one

just stands. An if with a comparison and some assignments not necessarily executed reside inside

the two loops. A good measure for the running time is the number of executed comparisons.
[11]

In the first iteration n comparisons take place, in the second n-1, then n-2, then n-3 etc. So

1+2+...+n comparisons are performed altogether. According to the well known Gaussian sum

formula these are exactly 1/2·(n-1)·n comparisons. Figure 2.8 illustrates this. The screened area

corresponds to the number of comparisons executed. It apparently corresponds approx. to half of

the area of a square with a side length of n. So it amounts to approx. 1/2·n
2
.

he O-notation

In other words: c is not really important for the description of the running time! To take this

circumstance into account, running time complexities are always specified in the so-called O-

notation in computer science. One says: The sorting method has running time O(n
2
). The

expression O is also called Landau's symbol.

space complexity

The better the time complexity of an algorithm is, the faster the algorithm will carry out his work

in practice. Apart from time complexity, its space complexity is also important: This is

http://www.leda-tutorial.org/en/official/ch02s02s03.html#ftn.d0e3927
http://www.leda-tutorial.org/en/official/ch02s02s03.html#fig.SortingByMinimumSearchAnalysis

essentially the number of memory cells which an algorithm needs. A good algorithm keeps this

number as small as possible, too.

There is often a time-space-tradeoff involved in a problem, that is, it cannot be solved with few

computing time and low memory consumption. One then has to make a compromise and to

exchange computing time for memory consumption or vice versa, depending on which algorithm

one chooses and how one parameterizes it.

Mathematically speaking, O(n
2
) stands for a set of functions, exactly for all those functions

which, ―in the long run‖, do not grow faster than the function n
2
, that is for those functions for

which the function n
2
 is an upper bound (apart from a constant factor.) To be precise, the

following holds true: A function f is an element of the set O(n
2
) if there are a factor c and an

integer number n0 such that for all n equal to or greater than this n0 the following holds:

f(n) ≤ c·n
2
.

The Big O-notation

Time complexities are always specified in the so-called O-notationin computer science. One

way to describe complexity is by saying that the sorting method has running time O(n
2
). The

expression O is also called Landau’s symbol.

Mathematically speaking, O(n
2
) stands for a set of functions, exactly for all those functions

which, ―in the long run‖, do now grow faster than the function n
2
, that is for those functions for

which the function n
2
 is an upper bound (apart from a constant factor). To be precise, the

following holds true: A function f is an element of the set O(n
2
) if there are a factor c and an

integer number n0 such that for all n equal to or greater than this n0 the following holds:

f(n) <= c . n
2

A function f from O(n
2
) may grow considerably more slowly than n

2
 so that, mathematically

speaking, the quotient f/n
2
 converges to 0 with growing n. An example of this is the function

f(n) = n.

Ways to calculate frequency/efficiency of an algorithm:

Eg. (i):

for i = 1 to n

for j = 1 to n

i j No. of times

1 1 to n n

2 2 to n n-1

3 3 to n n-2

- – -

- – -

- – -

n-1 n-1 to n 2

n n to n 1

Therefore,

1+2+3+……………+(n-1)+n

=n(n+1)/2 (Sum of n terms)

Frequency, f (n) = n (n+1)/2 = n
2
/2 + n/2 = 0.5 n

2
 + 0.5 n

A higher value of n
2
 will be most effective. 0.5 is a negligible value.

Therefore in Big (O) notation, f (n) = O (n
2
).

Eg. (ii):

for i = 1 to n

sum = sum + I;

Big (O) Notation, f(n) = O(n)

Linear Search:

1. Best Case: When search value is found at first position

f(n) = 1

2. Worst Case: Value not in array or in the end

f(n) = n (n number of comparisons are made).

3. Average Case: 1, 2, 3…n

(1 + 2 + 3 + ……………………… + n) / n

=n(n+1)/2.n = (n+1)/2

=n/2 + 1/2

=0.5 n + 0.5

f(n) = O(n)

Thus Big-O Notation is a useful measurement tool for measuring time complexity.

Array

C programming language provides a data structure called the array, which can store a fixed-size

sequential collection of elements of the same type. An array is used to store a collection of data,

but it is often more useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you

declare one array variable such as numbers and use numbers[0], numbers[1], and ...,

numbers[99] to represent individual variables. A specific element in an array is accessed by an

index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of

elements required by an array as follows:

type arrayName [arraySize];

This is called a single-dimensional array. The array Size must be an integer constant greater

than zero and type can be any valid C data type. For example, to declare a 10-element array

called balance of type double, use this statement: double balance [10];

Now balance is variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays

You can initialize array in C either one by one or using a single statement as follows:

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } can not be larger than the number of elements that we

declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is created.

Therefore, if you write:

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

You will create exactly the same array as you did in the previous example. Following is an

example to assign a single element of the array:

balance[4] = 50.0;

The above statement assigns element number 5th in the array with a value of 50.0. All arrays

have 0 as the index of their first element which is also called base index and last index of an

array will be total size of the array minus 1. Following is the pictorial representation of the same

array we discussed above:

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the

element within square brackets after the name of the array. For example:

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to salary

variable. Following is an example which will use all the above mentioned three concepts viz.

declaration, assignment and accessing arrays:

#include <stdio.h>

int main ()

{

 int n[10]; /* n is an array of 10 integers */

 int i,j;

 /* initialize elements of array n to 0 */

 for (i = 0; i < 10; i++)

 {

 n[i] = i + 100; /* set element at location i to i + 100 */

 }

 /* output each array element's value */

 for (j = 0; j < 10; j++)

 {

 printf("Element[%d] = %d\n", j, n[j]);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

C programming language allows multidimensional arrays. Here is the general form of a

multidimensional array declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5 . 10 . 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays:

The simplest form of the multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional

integer array of size x,y you would write something as follows:

type arrayName [x][y];

Where type can be any valid C data type and arrayName will be a valid C identifier. A

two-dimensional array can be think as a table which will have x number of rows and y

number of columns. A 2-dimensional array a, which contains three rows and four columns can

be shown as below.

Thus, every element in array a is identified by an element name of the form a[i][j], where a is

the name of the array, and i and j are the subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays:

Multidimensional arrays may be initialized by specifying bracketed values for each row.

Following is an array with 3 rows and each row has 4 columns.

int a[3][4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following initialization is

equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements:

An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and

column index of the array. For example:

int val = a[2][3];

The above statement will take 4th element from the 3rd row of the array. You can verify it in the

above diagram. Let us check below program where we have used nested loop to handle a two

dimensional array:

#include <stdio.h>

int main ()

{

 /* an array with 5 rows and 2 columns*/

 int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

 int i, j;

 /* output each array element's value */

 for (i = 0; i < 5; i++)

 {

 for (j = 0; j < 2; j++)

 {

 printf("a[%d][%d] = %d\n", i,j, a[i][j]);

 }

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although it is likely

that most of the arrays you create will be of one or two dimensions.

Array Representation:

We can represrnt an array in types Column-major and Row-major

Arrays may be represented in Row-major form or Column-major form. In Row-major form, all

the elements of the first row are printed, then the elements of the second row and so on upto the

last row. In Column-major form, all the elements of the first column are printed, then the

elements of the second column and so on upto the last column. The ‗C‘ program to input an

array of order m x n and print the array contents in row major and column major is given below.

 The following array elements may be entered during run time to test this program:

Input: Rows: 3, Columns: 3;

1 2 3

4 5 6

7 8 9

Output:

Row Major:

1 2 3

4 5 6

7 8 9

Column Major:

1 4 7

2 5 8

3 6 9

/* Program to input an array and display in row-major and column major form */

#include <stdio.h>

#define MAX 10

Intmain(){

int arr[MAX][MAX],m,n,i,j;

printf(―nEnter total number of rows?‖);

scanf(―%d‖,&m);

printf(―nEnter total number of columns?‖);

scanf(―%d‖,&n);

for(i=0;i<m;i++){

for(j=0;j<n;j++){

printf(―nEnter number?‖);

scanf(―%d‖,&arr[i][j]);

}

}

printf(―nnRow-Major Order:n‖);

for(i=0;i<m;i++){

for(j=0;j<n;j++){

printf(―%dt‖,arr[i][j]);

}

printf(―n‖);

}

printf(―nnColumn-Major Order:n‖);

for(i=0;i<m;i++){

for(j=0;j<n;j++){

printf(―%dt‖,arr[j][i]);

}

printf(―n‖);

}

}

1.3.8 Multidimensional Arrays

The 80x86 hardware can easily handle single dimension arrays. Unfortunately, there is no magic

addressing mode that lets you easily access elements of multidimensional arrays. That's going to

take some work and lots of instructions.

Before discussing how to declare or access multidimensional arrays, it would be a good idea to

figure out how to implement them in memory. The first problem is to figure out how to store a

multi-dimensional object into a one-dimensional memory space.

Consider for a moment a Pascal array of the form A: array [0...3, 0...3] of char. This

array contains 16 bytes organized as four rows of four characters. Somehow you've got to draw a

correspondence with each of the 16 bytes in this array and 16 contiguous bytes in main memory.

The figure below shows one way to do this.

Array as storage elements

An array element is one of the scalar data items that make up an array. A subscript list

(appended to the array or array component) determines which element is being referred to. A

reference to an array element takes the following form:

array(subscript-list)

array

Is the name of the array.

subscript-list

Is a list of one or more subscripts separated by commas. The number of subscripts must

equal the rank of the array.

Each subscript must be a scalar integer (or other numeric) expression with a value that is

within the bounds of its dimension.

Representation of Multidimensional Array:

For example, in two-dimensional array BAN, element BAN (1,2) has a subscript order value of

4; in three-dimensional array BOS, element BOS(1,1,1) has a subscript order value of 1.

In an array section, the subscript order of the elements is their order within the section itself. For

example, if an array is declared as B(20), the section B(4:19:4) consists of elements B(4), B(8),

B(12), and B(16). The subscript order value of B(4) in the array section is 1; the subscript order

value of B(12) in the section is 3.

1.1 Basics of Stacks

Introduction:

A stack is an Abstract Data Type (ADT), commonly used in most programming languages. It

is named stack as it behaves like a real-world stack, for example – a deck of cards or a pile

of plates, etc.

Example

A real-world stack allows operations at one end only. For example, we can place or

remove a card or plate from the top of the stack only. Likewise, Stack ADT allows all

data operations at one end only. At any given time, we can only access the top

element of a stack.

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out. Here, the

element which is placed (inserted or added) last, is accessed first. In stack terminology,

insertion operation is called PUSH operation and removal operation is

called POP operation.

1.2 Basic Operations on Stack:

A stack is a container of objects that are inserted and removed according to the last-in first-out

(LIFO) principle. In the pushdown stacks only two operations are allowed: push the item into the

stack, and pop the item out of the stack. A stack is a limited access data structure - elements can

be added and removed from the stack only at the top. push adds an item to the top of the stack,

pop removes the item from the top. A helpful analogy is to think of a stack of books; you can

remove only the top book, also you can add a new book on the top.

A stack is a recursive data structure. Here is a structural definition of a Stack: a stack is either

empty or it consists of a top and the rest which is a stack;

1.2.1 Push Operation

The process of putting a new data element onto stack is known as a Push Operation.

Push operation involves a series of steps −

 Step 1 − Checks if the stack is full.

 Step 2 − If the stack is full, produces an error and exit.

 Step 3 − If the stack is not full, increments top to point next empty space.

 Step 4 − Adds data element to the stack location, where top is pointing.

 Step 5 − Returns success.

If the linked list is used to implement the stack, then in step 3, we need to allocate

space dynamically.

Algorithm for PUSH Operation

A simple algorithm for Push operation can be derived as follows −

begin procedure push: stack, data

 if stack is full

 return null

 endif

 top ← top + 1

 stack[top] ← data

end procedure

1.2.2 Pop Operation

Accessing the content while removing it from the stack, is known as a Pop Operation.

In an array implementation of pop() operation, the data element is not actually

removed, instead top is decremented to a lower position in the stack to point to the

next value. But in linked-list implementation, pop() actually removes data element and

deallocates memory space.

A Pop operation may involve the following steps −

 Step 1 − Checks if the stack is empty.

 Step 2 − If the stack is empty, produces an error and exit.

 Step 3 − If the stack is not empty, accesses the data element at which top is pointing.

 Step 4 − Decreases the value of top by 1.

 Step 5 − Returns success.

Algorithm for Pop Operation

A simple algorithm for Pop operation can be derived as follows −

begin procedure pop: stack

 if stack is empty

 return null

 endif

 data ← stack[top]

 top ← top - 1

 return data

end procedure

To use a stack efficiently, we need to check the status of stack as well. For the same purpose, the

following functionality is added to stacks −

peek() − get the top data element of the stack, without removing it.

isFull() − check if stack is full.

isEmpty() − check if stack is empty.

At all times, we maintain a pointer to the last PUSHed data on the stack. As this pointer always

represents the top of the stack, hence named top. The top pointer provides top value of the stack

without actually removing it.

First we should learn about procedures to support stack functions −

peek()

Algorithm of peek() function −

begin procedure peek

 return stack[top]

end procedure

Implementation of peek() function in C programming language −

Example

int peek() {

 return stack[top];

}

isfull()

Algorithm of isfull() function −

begin procedure isfull

 if top equals to MAXSIZE

 return true

 else

 return false

 endif

end procedure

Implementation of isfull() function in C programming language −

Example

bool isfull() {

 if(top == MAXSIZE)

 return true;

 else

 return false;

}

isempty()

Algorithm of isempty() function −

begin procedure isempty

 if top less than 1

 return true

 else

 return false

 endif

end procedure

Implementation of isempty() function in C programming language is slightly different.

We initialize top at -1, as the index in array starts from 0. So we check if the top is

below zero or -1 to determine if the stack is empty. Here's the code −

Example

bool isempty() {

 if(top == -1)

 return true;

 else

 return false;

}

1.3 Stack Representation

The following diagram depicts a stack and its operations −

A stack can be implemented by means of Array, Structure, Pointer, and Linked List.

Stack can either be a fixed size one or it may have a sense of dynamic resizing. Here,

we are going to implement stack using arrays, which makes it a fixed size stack

implementation.

 Dynamic memory = memory allocated at run-time.

 Static memory = memory allocated at compile-time.

 Programming languages like C and Pascal provide libraries for managing

dynamic memory. This memory is allocated from a special area called heap. The

heap is managed by a special language component that implements functions

like new and dispose in Pascal or malloc(), calloc() and free() in C.

 In languages that do not provide facilities for dynamic memory allocation it is

possible to simulate it using static memory. Also, even if the pointer data type is

not supported , it is possible to simulate it using integer indices.

 The idea is to define the heap as a static block of memory and define a set of

operations for managing objects allocated in this block. To simplify things, we

shall assume that all the objects have the same size (i.e. they are homogenous).

1.4 Multiple stack implementation using single array :

 To implement multiple stacks in a single array, one approach is to divide the array

in k slots of size n/k each, and fix the slots for different stacks, we can use arr[0] to

arr[n/k-1] for first stack, and arr[n/k] to arr[2n/k-1] for stack2 and so on where arr[] is the

array of size n.

Although this method is easy to understand, but the problem with this method is

inefficient use of array space.A stack push operation may result in stack overflow even if

there is space available in arr[].

Examples:

Input :Enter the Number of stacks

Output :5 Input : 1.Push 2.pop 3.Display 4.exit

Input :Enter your choice

Output :1Input :Enter the stack number

Output :2

Input :Enter element to push

Output :15Input :Enter your choice

Output :2

Input :Enter the stack no to pop

Output :2

Output :15 from stack 2 is deletedInput: Enter your choice

output: 3

output: Stack is emptyInput :Enter your choice

Output :4

Output :Program Terminated

Algorithm:

1. Here we use 2 arrays min[] and max[] to represent the lower

and upper bounds for a stack

2. Array s[] stores the elements of the stack

3. Array top[] is used to store the top index for each stack

4. Variable ns represents the stack number

5. Variable size represents the size for each stack in an array

6. First we build a function init() to initialize the starting values

7. Then we have a function createstack() to create the stack

8. Function Push() & Pop() are used to push and pop an element to and from the stack

9. Function Display() is used to display the elements in a particular stack

1.5 Applications of Stack

 The simplest application of a stack is to reverse a word. You push a given word to stack -

letter by letter - and then pop letters from the stack.

 Another application is an "undo" mechanism in text editors; this operation is

accomplished by keeping all text changes in a stack.

 Backtracking. This is a process when you need to access the most recent data element in

a series of elements. Think of a labyrinth or maze - how do you find a way from an

entrance to an exit?

 Once you reach a dead end, you must backtrack. But backtrack to where? to the previous

choice point. Therefore, at each choice point you store on a stack all possible choices.

Then backtracking simply means popping a next choice from the stack.

Implementation of Stack

In the standard library of classes, the data type stack is an adapter class, meaning that a stack is

built on top of other data structures. The underlying structure for a stack could be an array, a

vector, an Array List, a linked list, or any other collection. Regardless of the type of the

underlying data structure, a Stack must implement the same functionality. This is achieved by

providing a unique interface:

The following picture demonstrates the idea of implementation by composition.

Another implementation requirement (in addition to the above interface) is that all stack

operations must run in constant time O(1). Constant time means that there is some constant k

such that an operation takes k nanoseconds of computational time regardless of the stack size.

Array-based implementation

In an array-based implementation we maintain the following fields: an array A of a default

size (≥ 1), the variable top that refers to the top element in the stack and the capacity that

refers to the array size. The variable top changes from -1 to capacity - 1. We say that a

stack is empty when top = -1, and the stack is full when top = capacity-1.

In a fixed-size stack abstraction, the capacity stays unchanged, therefore when top reaches

capacity, the stack object throws an exception. See ArrayStack.java for a complete

implementation of the stack class.

In a dynamic stack abstraction when top reaches capacity, we double up the stack size.

1.6 Recursion

Recursion in computer science is a method where the solution to a problem depends on

solutions to smaller instances of the same problem (as opposed to iteration).
[1]

 The approach can

be applied to many types of problems, and recursion is one of the central ideas of computer

science.

"The power of recursion evidently lies in the possibility of defining an infinite set of objects by a

finite statement. In the same manner, an infinite number of computations can be described by a

finite recursive program, even if this program contains no explicit repetitions."

Example of recursion in C programming

Write a C program to find sum of first n natural numbers using recursion. Note: Positive

integers are known as natural number i.e. 1, 2, 3....n

#include <stdio.h>

int sum(int n);

int main(){

 int num,add;

 printf("Enter a positive integer:\n");

 scanf("%d",&num);

 add=sum(num);

 printf("sum=%d",add);

}

int sum(int n){

 if(n==0)

 return n;

 else

 return n+sum(n-1); /*self call to function sum() */

}

Output

Enter a positive integer:

http://www.cs.cmu.edu/~adamchik/15-121/lectures/Stacks%20and%20Queues/code/ArrayStack.java
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Iteration#Computing
http://en.wikipedia.org/wiki/Recursion_%28computer_science%29#cite_note-1
http://en.wikipedia.org/wiki/Recursion

5

15

In, this simple C program, sum() function is invoked from the same function. If n is not equal to

0 then, the function calls itself passing argument 1 less than the previous argument it was called

with. Suppose, n is 5 initially. Then, during next function calls, 4 is passed to function and the

value of argument decreases by 1 in each recursive call. When, n becomes equal to 0, the value

of n is returned which is the sum numbers from 5 to 1.

For better visualization of recursion in this example:

sum(5)

=5+sum(4)

=5+4+sum(3)

=5+4+3+sum(2)

=5+4+3+2+sum(1)

=5+4+3+2+1+sum(0)

=5+4+3+2+1+0

=5+4+3+2+1

=5+4+3+3

=5+4+6

=5+10

=15

Every recursive function must be provided with a way to end the recursion. In this example

when, n is equal to 0, there is no recursive call and recursion ends.

1.6.1 Reverse a Stack using Recursion :

Given a stack of integers, we have to reverse the stack elements using recursion. We cannot any

loop like for, while etc and we can only use push, pop, isEmpty and isFull functions of given

stack.

Input Stack

 2 <--- Top

 4

 8

 9

Output Stack

 9 <--- Top

 8

 4

 2

Here we are going to use recursion to reverse the stack elements. We will store the top elements

of stack on function stack one by one until stack becomes empty. When stack becomes empty,

we will insert an element at the bottom of stack and then insert all the elements stores in function

stack back in same sequence. Here we will use two user defined functions "insertAtBottom" and

"reverse".

void insertAtBottom(int num) : This function inserts a number "num" at the bottom of stack

using recursion.

void reverse() : This function pop's top element and store it in function stack. Then it recursively

calls itself to reverse remaining stack. Once remaining stack elements are reversed, it calls

insertAtBottom function to insert top element at the bottom of stack.

1.6.2 Factorial Program in C: Factorial of n is the product of all positive descending integers.

Factorial of n is denoted by n!. For example:

5! = 5*4*3*2*1 = 120

3! = 3*2*1 = 6

Program:

1. #include<stdio.h>

2. int main()

3. {

4. int i,fact=1,number;

5. printf("Enter a number: ");

6. scanf("%d",&number);

7. for(i=1;i<=number;i++){

8. fact=fact*i;

9. }

10. printf("Factorial of %d is: %d",number,fact);

11. return 0;

12. }

Output:

Enter a number: 5

Factorial of 5 is: 120

Types of recursion

Single recursion and multiple recursion

Recursion that only contains a single self-reference is known as single recursion, while

recursion that contains multiple self-references is known as multiple recursion. Standard

examples of single recursion include list traversal, such as in a linear search, or computing the

factorial function, while standard examples of multiple recursions include tree traversal, such as

in a depth-first search, or computing the Fibonacci sequence.

Indirect recursion

Most basic examples of recursion, and most of the examples presented here, demonstrate direct

recursion, in which a function calls itself. Indirect recursion occurs when a function is called not

by itself but by another function that it called (either directly or indirectly). For example, if f calls

f, that is direct recursion, but if f calls g which calls f, then that is indirect recursion of f. Chains

of three or more functions are possible; for example, function 1 calls function 2, function 2 calls

function 3, and function 3 calls function 1 again.

http://en.wikipedia.org/wiki/Tree_traversal
http://en.wikipedia.org/wiki/Fibonacci_sequence

Advantages and Disadvantages of Recursion

Recursion is more elegant and requires few variables which make program clean. Recursion can be

used to replace complex nesting code by dividing the problem into same problem of its sub-type.

In other hand, it is hard to think the logic of a recursive function. It is also difficult to debug the

code containing recursion.

1.7 Evaluating Arithmetic Expressions Using Stack

An important application of stacks is in parsing. For example, a compiler must parse arithmetic

expressions written using infix notation:

1 + ((2 + 3) * 4 + 5)*6

We break the problem of parsing infix expressions into two stages. First, we convert from infix

to a different representation called postfix. Then we parse the postfix expression, which is a

somewhat easier problem than directly parsing infix.

The stack organization is very effective in evaluating arithmetic expressions. Expressions are

usually represented in what is known as Infix notation, in which each operator is written between

two operands (i.e., A + B). With this notation, we must distinguish between (A + B)*C and A +

(B * C) by using either parentheses or some operator-precedence convention. Thus, the order of

operators and operands in an arithmetic expression does not uniquely determine the order in

which the operations are to be performed.

1. Polish notation (prefix notation) –
It refers to the notation in which the operator is placed before its two operands . Here no

parentheses are required, i.e.,
+AB

2. Reverse Polish notation(postfix notation) –
It refers to the analogous notation in which the operator is placed after its two operands.

Again, no parentheses is required in Reverse Polish notation, i.e.,
 AB+

1.8 Transformation of Arithmetic Expressions

In the stack, we can convert the arithmetic expression in infix to prefix or postfix as per your

requirement .they are basically two types

1. Converting from Infix to Postfix.

2. Converting from Infix to Prefix

1.8.1 Converting from Infix to Postfix.

Typically, we deal with expressions in infix notation

2 + 5

where the operators (e.g. +, *) are written between the operands (e.q, 2 and 5). Writing the

operators after the operands gives a postfix expression 2 and 5 are called operands, and the '+' is

operator. The above arithmetic expression is called infix, since the operator is in between

operands. The expression

2 5 +

Writing the operators before the operands gives a prefix expression

+2 5

Suppose you want to compute the cost of your shopping trip. To do so, you add a list of numbers

and multiply them by the local sales tax (7.25%):

70 + 150 * 1.0725

Depending on the calculator, the answer would be either 235.95 or 230.875. To avoid this

confusion we shall use a postfix notation

70 150 + 1.0725 *

Postfix has the nice property that parentheses are unnecessary.

Now, we describe how to convert from infix to postfix.

1. Read in the tokens one at a time

2. If a token is an integer, write it into the output

3. If a token is an operator, push it to the stack, if the stack is empty. If the stack is not

empty, you pop entries with higher or equal priority and only then you push that token to

the stack.

4. If a token is a left parentheses '(', push it to the stack

5. If a token is a right parentheses ')', you pop entries until you meet '('.

6. When you finish reading the string, you pop up all tokens which are left there.

7. Arithmetic precedence is in increasing order: '+', '-', '*', '/';

Example. Suppose we have an infix expression:2+(4+3*2+1)/3. We read the string by characters.

'2' - send to the output.

'+' - push on the stack.

'(' - push on the stack.

'4' - send to the output.

'+' - push on the stack.

'3' - send to the output.

'*' - push on the stack.

'2' - send to the output.

1.8.2 Evaluating a infix to Postfix Expression. We describe how to parse and evaluate a

postfix expression.

1. We read the tokens in one at a time.

2. If it is an integer, push it on the stack

3. If it is a binary operator, pop the top two elements from the stack, apply the operator, and

push the result back on the stack.

Consider the following postfix expression

5 9 3 + 4 2 * * 7 + *

Here is a chain of operations

Stack Operations Output

push(5); 5

push(9); 5 9

push(3); 5 9 3

push(pop() + pop()) 5 12

push(4); 5 12 4

push(2); 5 12 4 2

push(pop() * pop()) 5 12 8

push(pop() * pop()) 5 96

push(7) 5 96 7

push(pop() + pop()) 5 103

push(pop() * pop()) 515

Note, that division is not a commutative operation, so 2/3 is not the same as 3/2.

1.9 Tower of Hanoi :

Tower of Hanoi is a mathematical puzzle where we have three rods and n disks. The objective of

the puzzle is to move the entire stack to another rod, obeying the following simple rules:

1) Only one disk can be moved at a time.

2) Each move consists of taking the upper disk from one of the stacks and placing it on top of

another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3) No disk may be placed on top of a smaller disk.

Example :

Take an example for 2 disks :

Let rod 1 = 'A', rod 2 = 'B', rod 3 = 'C'.

Step 1 : Shift first disk from 'A' to 'B'.

Step 2 : Shift second disk from 'A' to 'C'.

Step 3 : Shift first disk from 'B' to 'C'.

The pattern here is :

Shift 'n-1' disks from 'A' to 'B'.

Shift last disk from 'A' to 'C'.

Shift 'n-1' disks from 'B' to 'C'.

Image illustration for 3 disks :

Program:

#include<stdio.h>

void TOH(int n,char x,char y,char z) {

 if(n>0) {

 TOH(n-1,x,z,y);

 printf("\n%c to %c",x,y);

 TOH(n-1,z,y,x);

 }

}

int main() {

 int n=3;

 TOH(n,'A','B','C');

}

Important Questions:

1. Write a program to input an array of five elements and print that array?

2. Write a program which stores the marks of 5 students in an array and then print all the

 marks. The marks of students are 75,85,80,95,90.

3. Write a program to demonstrate the working of array.

4. Program to read and write array and find the sum of Even and odd.

5. What is an array ?

6. Differentiate between one-dimensional and two -dimensional arrays.

7. What are limitations of arrays?

8. Give an example to show the usefulness of an arrays?

9. Name some areas to application of two-dimensional arrays.

10. How a two-dimensional array is represented in Memory?

11. Give postfix form for A+ [(B+C) + (D+E)*F]/G

12. What is a stack? List the application of the stack in computers.

13. What are the basic operations performed on a stack?

14. How do you represent a stack in C ?

15. Why stack is called a LIFO data structure ?

16. What is the significance of the top in a stack ?

17. When do you say stack is full and stack is empty ?

18. Write algorithm in C to perform push and pop operations.

19. Differentiate between prefix and postfix expressions.

20. Evaluate the following postfix expressions

 4589+-+

 4025 + 2922-24+

 24159^/10+

21. Devise an algorithm which translates a postfix expression to a prefix expression.

